Archive

Author Archive

Measuring the Broadband Speed Divide using Crowdsourced Data

Digital applications and services increasingly require high-speed Internet connectivity. Yet a strong “broadband divide” exists between nations [1,2]. We try to understand how big data can be used to measure this divide. In particular, what new measurement opportunities can crowdsourced data offer?

The broadband divide has been widely measured using subscription rates. However, the broadband speed divide measured using observed speeds has been less explored due to the lack of data in the hands of regulators and statistical offices. This article focuses on measuring the fixed-network broadband speed divide between developed and developing countries, exploring the benefits and limitations of using new crowdsourced data.

To this aim we used measurements from the Speedtest Global Index, generated by Ookla using data volunteered by Internet users verifying the speed of their Internet connections [3]. These crowdsourced tests allow this firm to estimate monthly measurements of the average upload and download speeds at the country level.

The dataset used for this analysis comprised monthly data, from January to December 2018, for a total of 120 countries. Using the income and regional categorisations set by the World Bank we identified 64 developing countries and 54 developed countries in seven regions. Complete data for only two of the least developed countries were available so these were not included in the analysis.

The following table presents the download and upload speed averages on the fixed network, aggregated by region and level of development, and the totals for all the countries in our final sample (n=118), while the figure below shows the download and upload speeds aggregated by level of development.

Table 1. Average upload and download speed by region and development level, fixed network. January – December 2018 (Mbps)

Note: Unweighted averages
Source: Author calculations using data from Ookla’s Speedtest Global Index [3]

Figure 1. Average upload and download speed by level of development, fixed network. January – December 2018 (Mbps)

-Download speeds. We observe that the divide between developed and developing countries is pronounced with average download speeds for the latter being around one-third of the former. However, the divide is also evident within regions: in the developed world, countries in North America have speeds three-times higher than those in the Middle East. Within the developing countries those in Europe & Central Asia have the highest download speeds and those in the Middle East & North Africa have the lowest. Overall, download speeds are much lower in the developing world, thus creating an important impediment to the use of data-intensive digital applications and services.

-Upload speeds. We identify that overall there is an existing divide between developed and developing countries similar in magnitude to the one observed in download speeds. However, when looking at the group of developing countries we see that regional rankings are different compared to those identified using download speeds: the East Asia & Pacific region ranks first and North America ranks third – the latter with speeds that are two-thirds of their download speeds. Across regions, upload speeds are always slower in the developing world, and again the Middle East & North Africa region ranks at the bottom; but the divide between download and upload speeds is lower in the developing world. Considering that faster upload speeds are also required in a data-intensive era, the majority of the countries are far from the ideal of having faster networks with synchronous speeds.

Some benefits and limitations are identified when measuring the broadband speed divide using this type of crowdsourced data.

-Benefits. First, the availability of these types of data allows us to measure the broadband speed divide between developed and developing countries using observed instead of theoretical speeds. Second, these measurements are openly available on a website that can be accessed by the general public at no cost. Third, the divide can be measured and tracked over time more frequently than when using survey or administrative data. Finally, this site reports both download and upload speeds which are important to measure in a data-intensive era.

-Limitations. Even if there are data available for a good number of countries there are no complete data about the least developed countries, leaving behind this group. Also, there might be some bias in the production of data as crowdsourced measurements might be coming from ICT-literate individuals in certain countries [4]. Finally, from this source it is not possible to access complete datasets with additional data points such as the number of observations, medians, and latencies for each country.

These findings derive from a broader research project that, overall, is researching use of big data for measurement of the digital divide.  Readers are welcome to contact the author for details of that broader project: luis.riveraillingworth@manchester.ac.uk

References

[1] ITU (2018). Measuring the Information Society Report 2018. Geneva, Switzerland: International Telecommunication Union.

[2] Broadband Commission (2018). The State of the Broadband: Broadband catalyzing sustainable development. Geneva, Switzerland: Broadband Commission for Sustainable Development.

[3] Ookla. (2018). Speed Test Global Index [Online]. Available: http://www.speedtest.net/global-index/about [Accessed 01/03/2019]

[4] Bauer, S., Clark, D. D. & Lehr, W. (2010). Understanding broadband speed measurements. In,TPRC 2010. Available at SSRN: https://ssrn.com/abstract=1988332

Advertisements

Measuring the Big Data Knowledge Divide Using Wikipedia

Big data is of increasing importance; yet – like all digital technologies – it is affected by a digital divide of multiple dimensions. We set out to understand one dimension: the big data ‘knowledge divide’; meaning the way in which different groups have different levels of knowledge about big data [1,2].

To do this, we analysed Wikipedia – as a global repository of knowledge – and asked: how does people’s knowledge of big data differ by language?

An exploratory analysis of Wikipedia to understand the knowledge divide looked at differences across ten languages in production and consumption of the specific Wikipedia article entitled ‘Big Data’ in each of the languages. The figure below shows initial results:

  • The Knowledge-Awareness Indicator (KAI) measures the total number of views of the ‘Big Data’ article divided by total number of views of all articles for each language (multiplied by 100,000 to produce an easier-to-grasp number). This relates specifically to the time period 1 February – 30 April 2018.
  • ‘Total Articles’ measures the overall number of articles on all topics that were available for each language at the end of April 2018, to give a sense of the volume of language-specific material available on Wikipedia.

‘Big Data’ article knowledge-awareness, top-ten languages*

ko=Korean; zh=Chinese; fr=French; pt=Portuguese; es=Spanish; de=German; it=Italian; ru=Russian; en=English; ja=Japanese.
Note: Data analysed for 46 languages, 1 February to 30 April 2018.
* Figure shows the top-ten languages with the most views of the ‘Big Data’ article in this period.
Source: Author using data from the Wikimedia Toolforge team [3]

 

Production. Considering that Wikipedia is built as a collaborative project, the production of content and its evolution can be used as a proxy for knowledge. A divide relating to the creation of content for the ‘Big Data’ article can be measured using two indicators. First, article size in bytes: longer articles would tend to represent the curation of more knowledge. Second, number of edits: seen as representing the pace at which knowledge is changing. Larger article size and higher number of edits may allow readers to have greater and more current knowledge about big data. On this basis, we see English far ahead of other languages: articles are significantly longer and significantly more edited.

Consumption. The KAI provides a measure of the level of relative interest in accessing the ‘Big Data’ article which will also relate to level of awareness of big data. Where English was the production outlier, Korean and to a lesser extent Chinese are the consumption outliers: there appears to be significantly more relative accessing of the article on ‘Big Data’ in those languages than in others. This suggests a greater interest in and awareness of big data among readers using those languages. Assuming that accessed articles are read and understood, the KAI might also be a proxy for the readers’ level of knowledge about big data.

We can draw two types of conclusion from this work.

First, and addressing the specific research question, we see important differences between language groups; reflecting an important knowledge divide around big data. On the production side, much more is being written and updated in English about big data than in other languages; potentially hampering non-English speakers from engaging with big data; at least in relative terms. This suggests value in encouraging not just more non-English Wikipedia writing on big data, but also non-English research (and/or translation of English research) given research feeds Wikipedia writing. This value may be especially notable in relation to East Asian languages given that, on the consumption side, we found much greater relative interest and awareness of big data among Wikipedia readers.

Second, and methodologically, we can see the value of using Wikipedia to analyse knowledge divide questions. It provides a reliable source of openly-accessible, large-scale data that can be used to generate indicators that are replicable and stable over time.

This research project will continue exploring the use of Wikipedia at the country level to measure and understand the digital divide in the production and consumption of knowledge, focusing specifically on materials in Spanish.

References

[1] Andrejevic, M. (2014). ‘Big Data, Big Questions |The Big Data Divide.’ International Journal of Communication, 8.

[2] Michael, M., & Lupton, D. (2015). ‘Toward a Manifesto for the “Public Understanding of Big Data”.’ Public Understanding of Science, 25(1), 104–116. doi: 10.1177/0963662515609005

[3] Wikimedia Toolforge (2018). Available at: https://tools.wmflabs.org/

%d bloggers like this: